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ABSTRACT

Tunicate Swarm Algorithm (TSA) is a metaheuristic method that imitates the life of the
tunicate. It ocfBls during navigation and foraging using jet propulsion and swarm behavior. A
feed-forward fflral network ( FFNN) is a neural network that is often used, and applied.
computational methods have been widely used to optimize FFNN weights in order to produce
better output. This paper proposes a compound algorithm based on a tfficate swarm
algorithm to optimize an FFNN. It is applied to power system stabilizers. The proposed
method is compared with other algofhm methods such as the feed-forward (FFNN), cascade
forward backpropagation (CFBNN), focused time delay (FTDNN), and distributed time delay
(DTDNNEJThe proposed method has the ability to improve the output of FFNN methods. The
proposed method has the average ability to reduce the overshft of the speed by 35.17% and
the undershoot of the rotor angle by 15.36% . In addition, the proposed method has better
capabilities than the comparison method. The results of the experiment show that the use of
the submitted algorithm has preferable adaptability and performance than the other methods.

Keywords: Feed-forward neural network; Metaheuristic; Neural network; Power system
stabilizer; Tunicate Swarm Algorithm

1. Introduction
Progress in economic and

operation is to keep the synchronous
generator running at its work point and able

technological development is followed by
demand for electric system requirements.
The electrical network is a collection of
non-linear and complex systems that is
influenced by the increase in load changes.
The main key in a reliable power system

to meet load demands according to the
available capacity. Synchronous machines
do not handly go down of swing under
regular forms. If a machine swing tends to
increase or decrease, synchronizing induces
it to perform normally. A condition often
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occurs when the synchronization from the
generator is less reliable and has a little
influence on the system, causing a generator
to lose synchronization. Meanwhile,
changes in load are followed by an
imbalance between supply and demand.
This results in the generator having to try to
stay in sync to adapt to new operating
conditions. Some disturbances often occur
in the form of major disturbances such as
disconnection of the generator from the
system, network outages, or small and
random load changes that occur in regular
conditions.  Oscillations often  follow
disturbances. Oscillations can be damped by
leading to new operating conditions. This is
called a stable system.

Oscillations that often occur and have
a large impact are low frequencies in the
0.2-2 Hz range [1]. The equipment used in
[@lving the sway stability obstacle is the
power system stabilizer (PSS). The PSS is
able to increase damping that it can
reform the achievement of the power
system.

Conventional PSS has a design using
control theory. Power system modeling is
assumed to be linear around nominal
operation. The PSS variable is assumed and
assigned to get the best performance. In
fact, the power system has a nonlinear
character and operation that varies over a
wide range. This is a weakness of
conventional PSS which cannot provide
optimal  performance with  complex
problems. This is exacerbated by the
configuration of an electrical system that
turns frequently. It also requires attention in
the PSS adjustment in maintaining its best
performance [2].

In recent years, methods using artificial
intelligence have begun to be used #&h the
aim of optimizing PSS variables such as
particle swarm optimization (PSO) [3-3],
taboo search [6], genetic algorithm [7-9],
Biogeography-Based Optimization [10-12],
bat algorithm [13-15], world cup
optimization algorithm [16], Harmony
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Search Algorithm [17-20], Fuzzy [20-22]
and neural networks [23-26].

Research on the power system
stabilizer is a popular area. Although many
studies have presented research in the power
system stabilizer area, there is still plenty of
room to explore for the best performance.
This paper has main contributions, namely:
1) Application of the newest afiffpromising
method of metaheuristics, namely the
Tunicate Swarm Algorithm. The method
waEresented by Kaur et al in April 2020.
In a study conducted by Kaur et al, it was
found that the TSA method had @& best
performance compared to the Spotted
Hyena Optimizer (SHO) method, Gray Wolf
Optimizer (GWOQ), Particle Swarm
Optimization (PSO), Multiverse Optimizer
(MVO), Sine Cosine Algorithm (SCA),
Gravitational Search Algorithm (GSA),
Genetic  Algorithm (GA), and Emperor
Penguin Optimizer (EPO) [27]. Based on
research by Kaur et al, this papcfldk using
the TSA method to optimize the feed-
forward [eural network method. The
proposed method is called TSA-FFNN. The
proposed method is used to adjust the power
sys§Bh stabilizer.

2) The focus of this researdEfils to measure
the output performance of the rotor speed
and angle in a single machine.

3) Accuracy and potential are presented by
conducting in-depth comparisons using
several methods, namely feed-forward
(FFNN), cascade forward backpropagation
(CFBNN), focus time delay (FTDNN), and
distributed delay time (DTDNN).

EJMaterials and Methods
2.1 Tunicate Swarm Algorithm

Tunicate Swarm Algorithm is an
algorithm that duplicates tunicate colonies.
This animal is a group of marine animals
which live on docks, rocks or the bottom of
boats. To most people, they look like tiny
blobs of color. The tunicate can be seen
from afar because it is capable of producing
bright blue-green light or bioluminescence.
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Tunicates have two ends that have
different functions; an open end, which is
ERed as a propulsion such as jet propulsion
using atrial siphons, and a closed end.
Tunicates move by relying on fluid bursts
[27]. This burst is so powerful that it can
move tunicates vertically in the ocean. This
animal has a shape in the millimeter scale.
Tunicates have the expertise to find food
sources in the sea when there is no food
source information. Tunicates have the
gEidiness to recognize food. This is called
jet propulsion and swarm intelligence

Mathematical modeling of the first
behavior of the tunicates, namely the
propulsion of the jet, must meet three
conditions: to prevent disputes between
tunicates, to shift the potential tunicate
locatoin, and to close on the potential
tunicate. On the other hand, the swarm
behavior has a function B update the
existence of other seeckers in order to find
the best optimal solution.

2.1.1 Keep away the conflict among
tunicate

To dodge the clash between tunicates,
the new search agent position calculation
(T) can be modeled as follows in Eq. (2.1).

- H

T:Tr 2;1
7 2.1

H= A W, (2.2)

W=2r, (2.3)

where gravity force is H in Eq. (2.1) and
Eq. (2.2). The movement of water advection

in the deep sea is W in Eq. (2.2) and Eq.
(2.3). 1., and r, are disorder grade that
have a range [0, 1]. S in Eq. (2.4) is the

colony strength between the tunicates. M
describes the social compels between search
agents.

"§ = \_I/min +n (I/nux - I/min )J 3 (2‘4)
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v

nex

where V. and reflect the beginning

min

and lower speeds to create social contact.
The variables V. and V,

min max

have work
values 1 and 4.

2.1.2 Shifting to the position of the
best tunicate

If conflict between tunicates can be
avoided, the tunicates will approach the best
tunicates.

X -r

K] and

0

; (2.5)

where the distance between the food source
and tunicate is Xh in Eq. (2.5 n is the
current iteration. The location of the food

source is E Vector Xp(nj shows the

location of the tunicate. A disordered grade
in space [0, 1] is *

and -

2.1.3 Assemble with the best tunicate

Tunicate can update its position
towards the best tunicate. It is related to the
position of food source

X\'. + ?_- ) X.f'\' L if and 0. 2 -
x(t)y=4_- _ __ (2.6)
X.\' -T- X.f.'\' ’ lf rmm’ < U‘S"

|
where x(¢) in Eq. (2.6) is the updated

position of tunicate with respect to the
position of food source X .

2.1.4 Swarm behavior

Optimal solutions are the best kept
and other tunicates positions are updated by
searching for the best tunicate positions.

The tunicate crowd behavior can be
formulated as follows in Eq. (2.7).
12 [
. X + X +1
x-S0 @)
2+n

The tunicate position will determine the last
position in a random area. The key points of
the turnicate swarm algorithm are:
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- Parameters IFE and W guard and
support a specified search space and
avoid conflict between tunicates.

- It is hoped that the exploration and
exploitation phase will get a better value

by using vector variations 7,/{ and W .
- The group behavior of the TSA
algorithm can be observed from jet
propulsion and tunicate colony behavior.

2.2 Feed forward neural networks

Neural Networks are designs that try
to replicate several of the fundamental
information execution methods proposed in
the brain. The advantages of neural
networks are  high-level  computing
applications, the ability to learn and
generalize (generalization is to produce the
appropriate output for input), ability for
non-linear problems, and adaptability [28].
ANN has an advanced neural network and a
feedback neural network. Feed-forward
networks have the characteristics of a
simple network structure and are easy to
implement [29]. The network is developed
from several neurons in each layer which
are connected by weighting intermediaries.
Neurons from related units in the previous
layer, the weighted input which is summed
by the refractive unit is passed to a single
neuron. The function of bias is to adapt the
input to a practical and possible range. The
Model of FFNN is illustrated in Fig. 1.

Input Layer Hidden Layer O ayer

Fig. 1. Conceptual model of a feed-forward
neural network.

LA S i
7

Y
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Output is the sum of the weighted and
biased inputs that have passed through the
transfer function. The Formula Processing
can be seen in Eq. (2.8) and Eq. (2.9).
Output is processed by going through the
next layer weight. This process is repeated
until it matches the algorithm specified.

0,0 =W, I.()+b, 2.8)

0,()=f(0,(1)) = ﬁ (2.9)

Neural network weighting optimization is to
get the best weight to achieve a higher
classiff#ition in terms of accuracy.

The mean square error (mse) is taken
to assess the fallacy. The MSE formula can
be seen in Eq. (2.10).

MSE=i(target,. ~-0.). (2.10)

i=l
2.3 Power system stabilizer

The power system stabilizer (PSS)
has the function of adding attenuation to the
system to avoid electromechanical
oscillations caused by minor disturbances. A
PSS in general has three important
components, namely gain, washout and
phase compensation. The block unit of a
PSS can be seen in Fig. 2. In a conventional
PSS, gain is still used and requires good
resetting  capability = when  operating
conditions change.

Aoy K sT, v,
s 1+sT,
Gain Washout Phase Compensation

Fig. 2. PSS Block Diagram.

The conventional IﬁS consists of a K,
gain unit related to a high-pass filter with a
time constant 7@ and a lead-lag

compensated phase unit with time 7, and

I,. PSS output (V) in Eq. (2.11) is the
input added to the excited system. The input
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of PSS represents the synchronous speed
deviation from the system A®,.

sTw 1457

v .
l+sTw 1+ 5T,

& pEs

= Am.

i

(2.11)

3. Results and Discussion

The generator is modeled in the
Heffron-Phillips model. The model can be
seen in Fig. 3. It includes KI1-K6, well-

known Heffron-Phillips variables. T

mn

18

input torque and F, is the reference

| Mechanical

voltage of the AVR. The rotor speed and the
rotor angle are @ and ¢ . The transient and
steady state internal voltage of the armature

are £ and E .

In the mechanical loop, K, is DC
gain and 7, is time constant of the AVR.
K, and 2H=M indicathe damping
factor and rotor inertia. T, is the direct axis
open circuit time constant. K, is DC gain.

T, is time constant of the AVR.

| Loy K, [

|

| AL 1 Av - 8
| = sHK, [ | »
i

Electri cal Loop

o 21

Fig. 3. Heffron—Phillips block diagram for SMIB power system [30].

Fig. 4 is the assembly of TSA with
FFNN for setting PSS in a single machine.
In this paper, the training data is using the
output speed and rotor angle of the system
as input for FFNN. At the start of the
processing in the TSA session, the random
weighting values were derived from the
FFNN. The random weight wvalue is
optimized using the TSA method. The
output will be the strength weight for
FFNN.

Verification and wvalidation are
employed to assess the achievement of the
submitted method. TEJA-FFNN  was
measured by comparing the results of the
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speed and rotor angle. The methods used for
comparison are FFNN, CFBNN, FTDNN,
and DTDNN. In this paper, the neural
network setting is using 4 hidden layers.
The number of iterations is limited to 1000
in order to avoid overfitting. Meanwhile, the
training method used Levenberg Marquardt
which has advantages in speed and stability.
The loading wvariation is also used to
examine the capability of the submitted
algorithm. In this study, the load variation
uses light loads (20%), medium loads
(60%), and loads close to full load (90%).
The first step is knowing the variables
required for the TSA method. This is to get
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the optimal value. The results from the TSA
will be used to obtain the
variable. Based on research from Kaur et al,
which used 30 and 50 tunicate populations

- -

with 100 iterations, this study is adding the
population data below the data, namely
using a population of 10. This is used to test
the convergence of the curve.

best FFNN

Initalization FFNN

Data Processing

1 Tunicate Py

]

]

I

]

|

1

1

i

]

] initial parameters and maximum number of
: iterations
]
]
]
|
1
]
]
]
I
1
]

:

Calculate the fitness value of lunicate

Tunicate Swarm Algorithm

Fig. 4. The TSA-FFNN Flowchart.

The results are shovE@in Fig. 5.
Details of the use of the TSA method can be
seen in Table 1. The best value is obtained
with a tunicate population of 50. Once the

Is the result
TSA-FFNN

Determing The jel propulsion and swarm Update the position of each Calculated fitness of updale
behaviers Based On Egs.7 tunicate tunicate
N Change tunicate

if the search space area is reached

satisfied?

Sava Data And Model

Tuning PSS with TSA-FFNN

l

Perfomance
Comparison

used.
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TSA parameter has been obtained it is used
for training the FFNN. Table 2 shows

complete details of the TSA parameters
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Fig. 5. Convergence Curve Of Tunicate for TSA-FFNN.
Table 1. Parameter values for various response to the speed and rotor angle can be
population TSA. seen in Fif 6 and Fig. 7. Detailed results
':E’I’U_lmiﬁ“ Rise T ??““:&:’i pek Best from case 1 can be seen in Table 3. In Table
unicate 15¢ 1 1me e (5 el Fitness
0 SEsosn 7e07al 11495 D55 3, the proposed method hf}s overshoot of a
30 7.1213 344710 07333 02255 speed response value with 0.1660. The
50 28.3982 962053  0.6075 0.1777 value is the best performance comparing
with other methods. The second-best value
Table 2. Parameter of TSA. is the application of conventional methods
Algorithm Parameter Value which has a value with 0.1988. The TSA-
Upper And Lower Limit [0.5.0.5] FFNN method has 16.5% better
TSA Maximum number of performance than conventional methods.
iterations 100

Population of Tunicate S0

The loading variation is used to test
the ability of the PSS modeling that apffflies
the TSA-FFNN method. The case 1 is to
give 20% loading to the system. The

Meanwhile, the TSA-FFNN method has the
best performance of undershoot rotor angle.
This value is -1.5772. It is followed by the
use of conventional methods with -1.6763.
The lowest wvalue is obtained by the
DTDNN method with -1.9408.
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Fig. 6. Speed with 20 % Load.
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Fig. 7. Rotor Angle with 20 % Load.
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Table 3. PSS With 20 % of Load.

Speed Response Rotor Angle Response
Methods Under 5 Settling Settling Time
Shoot Ovwer Shoot  Rise Time (s) Time(s) Under Shoot Rise Time (s) (s)

Conventional -0.4012 0.1988 0.0054 110.7963 -1.6763 05191 1452667
FFNN -0.4811 0.3011 0.1720 107.2049 -1.9292 1.5021 147.0082
CFBNN -0.4797 0.2997 0.1732 106.9809 -1.9301 1.6084 147.1597
FTDNN -0.4316 0.2562 0.1519 109.1226 -1.8221 1.1943 148.1122
DTDNN -0.4818 0.2986 0.1817 107.1667 -1.9408 1.8207 146.6075
TSA-FFNN -0.3473 0.1660 0.2305 117.8808 -1.5772 1.1475 150.2386

Experiment 2 is to give 60% loading to the
system. Fig. 8 and Fig. 9 are the results of
experiment 2. It can be seen in waves from

the TSA-FFNN method. The waves are
sloping compared to other methods. Details
of case 2 can be seen in Table 4.

T T I B
= =Without I
— =Conventional
FFHN
= =CFBNN
= =FTDNN
= =DTDONW
——TSA-FFNN
) ~ -
a T T
. -
=
=]
=
g ]
o
1 1 1 1 ]
100 120 140 160 180
Time (s)

Fig. 8. Speed with 60 % Load.

Op——

D5

Amplitude (p.u)
in
T

ra

2.5

100
Time (s)

120 140

Fig. 9. Rotor angle with 60 % Load.
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Table 4. PSS With ﬁﬂfaofLoad

Speed Response Rotor Angle Response

el gg;: Ower Shoot Rise Time (s) Sﬁmlg fime RISEES Shoot R'il.—slglfs) —
Conventional -0.6457 0.2984 0.0054 108.6542 25016 0.1663 1439857
FFNN -0.6693 0.3794 0.2533 107.9757 27096 21331 146.9509
CFBNN -0.6549 03724 0.2600 107.9826 -2 6885 22132 1473345
FTDNN -0.6113 03260 02232 110.0022 -2.5499 1.9220 148.5396
DTDNN -0.6583 03814 02772 108.0680 26869 23795 147.1166
TSA-FFNN -0.5602 02456 0.3364 115.2208 -2.3203 1.9272 1493650

In Table 4, the lowest value for
overshoot of the speed response, 0.3814, is
obtained by the DTDNN method. The best
value is achieved by the proposed method
with 0.2456 and followed by the
conventional method with 02984, The
method proposed in case study 2 has
17.69% better ability than the conventional
method. Meanwhile, the lowest value for the
undershoot rotor angle belongs to the FFNN
method. The value is -2,7096. The TSA-

FFNN method has the best value on the
undershoot of rotor angle. This value is
16.77% better than the conventional method
which is second best.

In case 3 with 90% loading assigned
to the system, the measurement is to
determine the system response when given a
load n@by to 100% full load. The results
of the speed and rotor angle can be seen in
Fig. 10 and Fig. 11.

08 T ~ T I

06 I\

Amplitude (p.u)

=Without

=Canventional
FFNN

=CFBNN

=FTDNN

= =DTDNN

e TSA-FFNN

20 60 80

100 120 140
Time (s)

Fig. 10. Speed with 90 % Load.
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Fig. 11. Rotor angle with 90 % Load.
Table 5. PSS With 90%Jof Load.
Speed Response Rotor Angle Response
Methods Settling Time Setiling Time (s)
Under Shoot Over Shoot  Rise Time (s) (s) Under Shoot  Rise Time (s) 2 )
Conventional 08171 037658 0.0086 106.6638 -3.1336 0.1750 140.7572
FFNN 08121 04186 0.3052 107.4492 -3.2253 2.4394 145.0699
CFBNN -0.8009 04133 0.3137 107.4591 -3.1943 2.5386 145.4819
FTDNN 0.7742 0.3757 0.2684 108.8626 -3.0737 2.1785 146.2465
DTDNN 08211 04354 0.3343 107.3687 -3.2207 2.7557 145.0275
TSA-FFNN 0.7226 03055 0.4030 112.4465 -2.8748 22282 146.2570

Table 5 shows the results for case 3.
The worst value for overshoot of the speed
response is in DTDNN with 0.4354. The
best value is from the TSA-FFNN, which is
followed by conventional methods. The
TSA-FFNN method has 18.92% better
ability  than  conventional  methods.
Meanwhile, the worst value for undershoot
of the rotor angle is in the FFNN method
with -3.2253. The best score is obtained by
the TSA-FFNN method followed by the
FTDNN method. The TSA-FFNN method
has 6.5% better ability than the FTDNN
method

60

4. Conclusion

This paper aims to comprehensively
review th@funicate swarm algorithm (TSA)
literature to improve the performance of a
feed-forward neural network ( FFNN) and
compare its performance. Its objective is to
acquire the best completion for oscillation
attenuation in the pof®r system by testing
in a single machine. The proposed method
has better results than the comparison
method in the load test of 20% , 60% and
00% . In this study, the application of the
TSA method used to improve the
performance of FFNN has the benefit of
increasing the ability of FFNN. It can be
seen that the value of the overshoot speed
by FFNN in case study 1 decreased by
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44.67% , case study 2 decreased by about
35.27% , and case study ) decreased by
about 26.59% . Meanwhile, the value of the
undershoot rotor angle by FFNN in case
study | decreased by about 20.84% , case
study 2 decreased by about 14.36% , and
case study 3 decreased by about 10.87%. In
addition, the proposed method has good
adaptability with load changes.  The
weakness of the proposed method is that the
experiment is using a simple system. So, the
proposed method needs to be tested on a
more complex system and non-linear issues
to determine its performance further.
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